MHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution

نویسندگان

  • A. R. Shateri Mechanical Engineering Department,Faculty of Mechanical Engineering, Shahrekord University, Shahrekord, I. R.Iran
  • P. Elyasi Mechanical Engineering Department,Faculty of Mechanical Engineering, Shahrekord University, Shahrekord, I. R.Iran
چکیده مقاله:

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriate transformations. The set of ODEs are solved using Keller–Box implicit finite-difference method. The effects of several parameters, such as magnetic parameter, volume fraction of different nanoparticles (Ag, Cu, CuO, Al2O3 and TiO2), velocity parameter, Prandtl number and temperature parameter on the velocity and temperature distributions, local Nusselt number and skin friction coefficient are examined. The analysis reveals that the temperature profile increases with increasing magnetic parameter and volume fraction of nanofluid. Furthermore, it is found that the thermal boundary layer increases and momentum boundary layer decreases with the use of water based nanofluids as compared to pure water. At constant volume fraction of nanoparticles, it is also illustrated that the role of magnetic parameter on dimensionless temperature becomes more effective in lower value.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

متن کامل

Boundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions

The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the pre...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 1

صفحات  9- 22

تاریخ انتشار 2016-12-24

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023